Mengapa Banyak Project Data Science Gagal Dijalankan?



Organizations can gain more business value from advanced analytics by recognizing and overcoming five common obstacles.
Photo by ThisIsEngineering on Pexels.com

Semakin banyak perusahaan yang mencoba menganut data science sebagai bagian dari fungsi dan kemampuan perusahaannya. Namun banyak dari mereka yang belum mampu secara konsisten memperoleh nilai bisnis dari investasi mereka dalam big data, artifical intelligence, dan machine learning. Selain itu, bukti menunjukkan bahwa kesenjangan semakin melebar antara organisasi yang berhasil memperoleh nilai tambah dari data science dan mereka yang berjuang untuk melakukannya.

Dikutip dari halaman article dibawah ini hal itu sebabkan karena beberapa hal yang terjadi di perusahaan tersebut.

Why So Many Data Science Projects Fail to Deliver

Organizations can gain more business value from advanced analytics by recognizing and overcoming five common obstacles.

More and more companies are embracing data science as a function and a capability. But many of them have not been able to consistently derive business value from their investments in big data, artificial intelligence, and machine learning. Moreover, evidence suggests that the gap is widening between organizations successfully gaining value from data science and those struggling to do so.

To better understand the mistakes that companies make when implementing profitable data science projects, and discover how to avoid them, we conducted in-depth studies of the data science activities in three of India’s top 10 private-sector banks with well-established analytics departments. We identified five common mistakes, as exemplified by the following cases we encountered, and below we suggest corresponding solutions to address them.

Mistake 1: The Hammer in Search of a Nail
Hiren, a recently hired data scientist in one of the banks we studied, is the kind of analytics wizard that organizations covet.3 He is especially taken with the k-nearest neighbors algorithm, which is useful for identifying and classifying clusters of data. “I have applied k-nearest neighbors to several simulated data sets during my studies,” he told us, “and I can’t wait to apply it to the real data soon.”

Hiren did exactly that a few months later, when he used the k-nearest neighbors algorithm to identify especially profitable industry segments within the bank’s portfolio of business checking accounts. His recommendation to the business checking accounts team: Target two of the portfolio’s 33 industry segments.

This conclusion underwhelmed the business team members. They already knew about these segments and were able to ascertain segment profitability with simple back-of-the-envelope calculations. Using the k-nearest neighbors algorithm for this task was like using a guided missile when a pellet gun would have sufficed.

Selanjutnya anda bisa membacanya disini

Categories: articleTags: , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: